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A buoyancy-driven system can be unstable due to two different mechanisms-one 
mechanical and the other involving buoyancy forces. The mechanical instability 
is of the type normally studied in connexion with the Orr-Sommerfeld equation. 
The buoyancy-driven instability is rather different and is related to the ‘ Coriolis ’- 
driven instability of rotating fluids. In  this paper, the stability of a buoyancy- 
driven system, recently called a ‘buoyancy layer’, is examined for the whole 
range of Prandtl numbers, c. The buoyancy-driven instability becomes in- 
creasingly important as the Prandtl number is increased and so particular interest 
is attached to the limit in which the Prandtl number tends to infinity. In  this 
limit, the system is neutrally stable to first order, but second-order effects render 
the flow unstable at  a Reynolds number of order c-4. Consequences of the results 
for the stability of convection in a vertical slot are examined. 

1. Introduction 
This paper contains a study of the stability, to two-dimensional disturbances, 

of a temperature and flow field established as a result of natural convection. It is 
notjust the study of a flow field as it will be seen that the basic temperature field 
plays an important part in producing instabilities. This is because temperature 
fluctuations derived from the basic temperature field result in the action of 
buoyancy forces, which can only be ignored in certain limiting cases. Buoyancy 
is, in fact, found to be the major source of instability in near-critical conditions 
unless the Prandtl number is small. 

The particular system chosen for study is an exact solution of the equations 
of motion (to the Boussinesq approximation). The velocity is unidirectional and 
depends only on a single co-ordinate z8. The temperature, relative to a state of 
uniform stratification, is also a function of x8 only, and the basic solution can be 
expressed in a form which does not involve the Prandtl number. The solution is 
a special case of a solution obtained by Prandtl(1952, p. 422) for ‘mountain and 
valley winds’. It is discussed by Gill (1966) in connexion with natural convection 
in a rectangular cavity at  large Rayleigh numbers and found to be an approxima- 
tion to the solution in the boundary layers on the vertical walls of the cavity. The 
solution is also discussed by Veronis (1967) and Barcilon & Pedlosky (1967) 



776 A .  E. Gill and A .  Davey 
and shown to be of importance in the study of strongly stratified systems. In this 
context, the boundary layer concerned is referred to as a ‘bouyancy ’ layer. 

There are thus three ways in which the present study may be usefill: ( a )  as a 
detailed study over the whole range of Prandtl numbers of the stability of a 
system established by natural convection; (b)  as a study relating to the stability 
of natural convection in a rectangular cavity; ( c )  as a study of the stability of a 
buoyancy layer. 

The f is t  study of the stability of a system driven by natural convection 
appears to have been made by Gershuni (1953). The system concerned was that 
established between infinite parallel vertical plates maintained at different fixed 
temperatures. A Galerkin method was used to the lowest approximation possible. 
The method was later refined by using more terms in the series of functions 
involved by Gershuni & Zhukhovitzki (1958), Kappus & Lehmann (1965) and 
Rudakov (1967). Gershuni (1955) also studied the case where the plates were 
inclined to the vertical. 

Nachtsheim (1963) studied the stability of the velocity and temperature 
field set up by natural convection in the neighbourhood of a vertical uniform flux 
plate. The calculations were made for Prandtl numbers of 0.733 and 6.7 using 
direct integration of the relevant equations, the parallel-flow approximation 
having been made. He compared his results with those obtained by neglecting 
the temperature fluctuations, that is by neglecting the thermal source of dis- 
turbance energy. For the larger Prandtl number, the neutral stability curves 
obtained by the two methods were quite different. For the smaller Prandtl 
number the inclusion of thermal effects resulted in the addition of a ‘nose ’-shaped 
piece t o  the neutral stability curve at smaller wave-numbers. The resulting 
curve showed two local minima of the Reynolds number. In addition phase 
velocities in excess of the maximum flow velocity were found. Recent experiments 
by Polymeropoulos & Gebhart (1967) in air are in agreement with Nachtsheim’s 
results. 

The system to be studied here differs from those above in that a vertical 
temperature gradient is present. Due to an analogy between stratified and rotating 
fluids, the basic system is analogous to a laminar Ekman layer and, for unit 
Prandtl number, the stability problem is the same (Gill 1966, $4) as that of an 
Ekman layer to rolls aligned with the external flow. The neutral stability curve 
found by Lilly (1966) for the latter problem is qualitatively very similar to the 
one found by Nachtsheim for the uniform flux plate problem at a Prandtl number 
of0.733. In  the rotating fluid case disturbance energy can be acquired through the 
action of Coriolis forces and the associated instability can thus be called a Coriolis- 
driven instability. 

Oidy two-dimensional disturbances are studied in this paper even though 
Squire’s theorem does not apply, owing to the presence of the basic vertical tem- 
perature gradient. In  systems where no such gradient exists Squire’s theorem i s  
valid (Nachtsheim 1963). 
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2. Equations and boundary conditions 
A fluid of kinematic viscosity u, thermal diffusivitity K and coefficient of 

cubical expansion y occupies the half space x* > 0 bounded by a vertical wall 
x* = 0. A uniform stable vertical temperature gradient G is imposed on the whole 
system and relative to this gradient the temperature of the wall is raised by a 
fixed amount AT above that of the fluid a t  large distances from the wall. This gives 
rise to horizontal temperature gradients and buoyancy -driven motion in a layer 
near the wall. The width of the layer is of order 1 and vertical velocities of order 
V are produced, where l2 = ~ ( u K ) ~ / N ,  

V = y g A T / d N ,  

where N = (ygG)4 is the Brunt-Vaisala frequency, = V / K  is the PrandtI 
number and g is the acceleration due to gravity. The Reynolds number R of the 

The second expression for R shows that it may also be interpreted as a Grashof 
number. The third expression for R is in terms of given quantities. The fourth 
expression shows that R is related to the slope of the isotherms. 

Using I ,  V ,  and AT as units of length, velocity and temperature, one can define 
non-dimensional co-ordinates, x, x ,  where x increases vertically upwards, corre- 
sponding non-dimensional velocity components u, w, a non-dimensional time t 
and a non-dimensional temperature 9 relative to the uniform vertical gradient. 
The continuity equation implies the existence of a stream function @ such that 

u = w = $kx 

and the vorticity and heat equations are 

D 
R E V 2 @  = Z ~ ~ - E V ~ $ ,  

where 

The second term in the heat equation arises because of the definition of 19 as a 
temperature relative to the uniform vertical gradient. 

The solution (see Gill 1966, $4) for the undisturbed state is 

w = W ( x )  = e-"sinx, 
9 = O(x)  = e-" cos x, 

and we consider perturbation to the stream function and temperature of the 
respective forms 

and W{e(x) eia(z+}, 

W($(z) eia(2-d) 1 
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where a and c are constants. The linear stability equations obtained by substitu- 
tion in the vorticity and heat equations, neglecting products of disturbance 
functions, are 

p - 2a2g+a49 - i a ~ [ (  w - c) (4”- ~ $ 1 -  W”$]+ 28’ = 0, 

ell - a 2 e  - i a a ~ [ (  w - c) e - 0’41 - 2$f = 0. 
(2.1) 

( 2 . 2 )  

These differ from the equations for a system without a vertical temperature 
gradient only through the presence of the last term in the second equation. The 
boundary conditions are 

$ = $ ’ = e = o  at x = O  (2.3) 

and $ , O - + O  as x+m. (2.4) 

The three solutions that satisfy the latter condition behave like exp ( -Ax) as 
x -+ co, where A is one of the three roots of 

(A2 - a’) (A2 - a2 + iaRc) (A2 - a2 + ~ ~ c T R c )  + 4A2 = 0, 

which has positive real part A,. We number the roots so tha t  

A,, < A,, < &,. 
If  any of these roots have real part small compared with unity, the corresponding 
solutions are likely to provide significant contributions to 0 and q5 at the terminal 
point x = x, of integration. For this reason, the outer boundary condition (2.4) 
was replaced by M $ =  M$’= MB=O at x=xl, 
where either (i) M = d/dx+ A,, 

(ii) M = d2/dx2 + ( A ,  + A,) d / d x  + A, A,. 

The first choice was found satisfactory for 0.4 6 a < 2 ,  but it was necessary to  
use the second choice for other values of a. The terminal point x1 was usually 
between 6 and 10. If x > 2n-, W, 0 and their derivatives are less than 0.2 yo of 
their maximum values. 

Integrals of the equations 
The energy integral can be obtained from (2.1) by multiplying the complex con- 
jugate q? of $, integrating from x = 0 to x = co and taking the real part. The 
resulting equation (Nachtsheim 1963, p. 11) is 

(2 .5)  

or 

~ R G ,  Ed,, = - DJlf + R M  + B, (2 .6 )  
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and the suffixes r and i denote real andimaginary parts. aRci EaM can be interpreted 
as the rate of change of disturbance kinetic energy, DITI as the rate of viscous 
dissipation, RM as the rate of transfer of kinetic energy from the mean flow to 
the disturbance and B as the rate of gain of disturbance kinetic energy through 
the action of buoyancy forces. A similar relation for temperature fluctuations 
can be obtained by multiplying (2.2) by 8, integrating from x = 0 to x = co and 
taking the real part. The resulting equation is 

where 

and 

(2.8) 

The term - B  appears in (2.8) only when a vertical temperature gradient 
is present. When there is such a gradient, avRci ET can be interpreted as the rate 
of gain of disturbance potential energy, Ddii as the rate of thermal dissipation, 
aRH as the rate of extraction of disturbance potential energy from the basic 
temperature field and B as the rate of conversion of disturance potential energy 
into disturbance kinetic energy. Also (2.6) and (2.8) can be added to give an equa- 
tion for the total disturbance energy 

aR~i(E,l/r+aET) = - ( D l i I + D T ) + R ( M + ~ H ) .  (2.10) 

Since ELir, ET,  Dl,I and DT are positive definite, it follows that either M or H 
must be positive if disturbances are to grow. If M is positive, disturbance energy 
is gained from the basic velocity field while if H is positive, disturbance energy is 
gained from the basic temperature field. 

We add two cautionary notes about the above equations. The first is that 
(2.10) can only be derived when there is a basic vertical temperature gradient, 
whereas Nachtsheim’s results suggest that the stability characteristics are much 
the same when there is no such gradient. We therefore try to avoid interpreting 
results in terms that are only meaningful when a vertical temperature gradient 
exists. Secondly, we note that the above equations are derived on the basis of 
linear disturbance theory. To relate ‘disturbance energy ’ to the energy of the 
whole system requires proper consideration of effects of second order in the dis- 
turbance velocity and temperature. 

3. Neutral stability curves 
The basic program was designed to find neutral stability curves, that is curves 

R(a, a) on which the imaginary part pi of p = ac is zero. The equations were 
integrated numerically using a Runge-Kutta marching procedure beginning 
at, x = 0 where the conditions (2 .3)  and the normalization $“(O) = 1 were applied. 
For a given value of a, guessed values of R, /3,, q5”(0) and O’(0) were used, and the 



780 A .  E .  Gill and A .  Davey 

integration carried to x = xl. After repeating with slightly different values of 
$"'(O) and f3'(0), linear interpolation was used as the inner loop of an iterative 
process designed to find values such that Mq5' and MB vanished at  x = xl. 
This was contained in an outer loop which was used to find values of R, p,. 
such that M# also vanished and (2.5) was satisfied. Alternatively R was kept 
fixed and appropriate values of a found. The latter scheme was used to find those 
parts of the neutral stability curves for which da/dR was small. Tests were made 

0.8 

d 

0-4 

' 

I I I I I 
100 200 300 400 

R 

FIGURE 1. Neutral stability curves for Prandtl numbers v = 0, 0.1 and 0.4. The circles 
indicate critical values and the line segment shows the large R asymptote deduced from the 
Rayleigh equation. 

R 

FIG~TRE 2. Neutral stability curves for Prandtl numbers v = 0.72, 1 and 2. The circles 
indicate critical values including those for u = 0-4, 4, 10 and 20. The line segment shows 
the large R asymptote deduced from the Rayleigh equation. 
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for dependence of the eigenvalues on the step length d and the terminal point xl. 
Values were chosen to  minimize the computing subject to  the error in the magni- 
tude of the eigenvalue being of the order of 0.1 %. Values of d between 0.12 and 
0.20 were generally found adequate and values of x1 between 6 and 10. 

’.O f / 

/10 

I I I I I 1 
20 40 60 80 I00 

U ~ R  

FIGURE 3. Neutral stability curves for Prandtl numbers u = 4, 10, 20, 50 a.nd m. The 
circles indicate critical values including those for u = 100, 200 and 400. 

The aim of the program was to find neutral stability curves, or a t  least portions 
of them, for the whole range of Prandtl numbers. Calculations were in fact made 
for the fourteen different values of cr listed in table 1, including the limiting 
values = 0 and v = 00 and the value u = 1 for which there is a direct analogy 
with the stability problem for a laminar Ekmanlayer. A selection of the calculated 
curves is shown in the first three figures. The curves show some rather interesting 
changes as v increases through the values for which computations were done. 
First there is the development of the ‘nose’-shaped piece on the curves a t  v = 0.72 
and u = 1. These nose-shaped pieces are very similar to  the one found by Nachts- 
heim (1963) for the flux-plate problem for v = 0-733 and shown by him to dis- 
appear when buoyancy effects on the instability were ignored. The same feature 
is implicit in Lilly’s (1966) results for the laminar Ekman layer, that is the neutral 
stability curves have a nose-shaped piece which disappears when Coriolis effects 
on the instability are ignored. Hence the ‘nose’-shaped part of the curve of 
lower wave numbers can be said to  represent the difference between the full 
stability problem and the Orr-Sommerfeld problem for the same velocity profile. 

The second interesting development is the branching off of the nose-shaped 
piece, first apparent a t  g = 2, so that there are then two unstable modes. I n  con- 
tradistinction, Lilly never found more than one unstable mode for g = 1 even 
though his method involved the calculation of eigenvalues for several modes. 
To check that there are indeed two unstable modes for g = 2, two curves of 
aci against a were calculated for R = 150 as follows. One curve was found by 
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starting near the neutral curve at a = 0.7 and following the changes in aci 8s a 
was decreased in small steps. The other curve was found by starting near the 
neutral curve at  a = 0.04 and increasing a in small steps. The two resulting curves 
are shown in figure 4 by solid lines. For comparison the results of a similar calcula- 
tion for a = 1 is shown by the broken line. 

A third interesting feature of the neutral stability curves is the behaviour as 
a tends to infinity. For a > 2 only the curve with the lowest critical Reynolds 
number was calculated and it was found that as @-too, the critical Reynolds 
number approached zero like a-4. The large g limit will be discussed in detail in 
§ 5 .  

0.01 

0 g 

-0.01 t 

\ \  
\ I  I 

1 -0 \ 
\ 0.6 

U \ 

FIGURE 4. The growth rate aci as a function of wave-number a at a Reynolds number of 
150. For a Prandtl number of 2 (solid lines) t w o  different modes are represented. The 
broken line shows the corresponding mode for a Prandtl number of 1. 

Before going further, mention should be made of a comparison that was made 
between the results for g = 1 and Lilly’s (1966) results for the analogue problem. 
For direct comparison with the results for E = 0 shown in his figures 6, 7 and 8, 
the variation of growth rate aci with a was calculated for Reynolds numbers of 
110, 150 and 500. Agreement was not perfect, the differences in aci usually being 
about 0.001 with a few larger differences for R = 500. We feel that this indicates 
errors of this order in Lilly’s results as we consider our errors in aci to be less than 
10-4. The difference is possibly due to Lilly’s use of a coarser mesh. We used 60 
intervals of 0-15 whereas Lilly (with a different method) used 35 intervals of 
(35a)-i, that is, intervals as great as 0.53 for a = 0.1. 

The critical Reynolds numbers, defined as minima of R(a), that were found 
are listed in table 1. These seem to fall naturally into two groups and are so divided 
in the table. For g = 0-72  and a = 1 it is evident that the critical values in the 
second group owe their existence to the ‘nose’-shaped piece on the neutral 
stability curves and hence to the effects of buoyancy on the instability. The 
division of critical points into two groups is also evident in figure 5 where the 
waves speed c is shown as a function of wave-number a. For g < 2,  the changes of 
c with a are most pronounced at  the smaller wave-numbers. For instance, the 
curves for a = 0.72 and a = 1 are practically coincident for a > 0-4, but quite 
distinct for the smaller wave-numbers. A t  g = 2 ,where theneutral stability curve 
splits the c = a curve is rather interesting. The part which corresponds to the 
upper curve for a > 0.4 is not drawn as it is almost coincident with the curves for 
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v = 0.72 and v = 1. The part that is drawn corresponds to the lower curve. Its 
rather exceptional shape is presumably associated with the splitting into two of 
the neutral stability curve. 

1.0 

a 0.5 

0 4  

C 
0-6 

FIGURE 5. The wave speed c of neutral disturbances as a function of wave-number a 
and Prandtl number. The small circles indicate the critical values listed in table 1.  The 
two points R correspond to solutions of the Rayleigh equation, and the brokcri line 
corresponds to c = W,,,. 

It will be noticed that c is often greater than the maximum value 0.3224 of W .  
If effects of buoyancy on the disturbance were ignored, c would, of course, be 
constrained to lie below the maximum value of W ,  so this result may be regarded 
as a buoyancy effect. Nachtsheim drew attention to the fact that cis greater than 
the maximum velocity in other problems involving gravitational forces, such as 
in the case of flow down an inclined plane (Benjamin 1957). 

Another study that was made of the neutral stability curves was aimed at  
detecting the limiting behaviour for large Reynolds numbers. The upper branches 
of the neutral curves for CT = 0,  0.72 and 1 were followed to fairly large values of 
the Reynolds number (614,533 and 500 respectively) but in none of these cases 
was there any indication that a limit was being approached. In each case, both 
a and c had attained their maximum values and were slowly decreasing as R 
increased at  the point where the calculation was terminated. It is to be expected 
(see Gregory, Stuart & Walker 1955; Szewczyk 1962; and Barcilon 1965 for rele- 
vant, comments) that as aR + 03, the solution will tend to a solution of the Ray- 
leigh equation (6.1). This equation is discussed in $6.  The limiting value, 0.77, 
of a corresponding to the solution of the Rayleigh equation is shown in figures 1 
and 2 and the limiting values 0.1778 and 0.3224 of c are marked R in figure 5. 
Evidently the calculation of the neutral stability curves would need to be taken 
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to much larger values of the Reynolds number before it could be seen whether 
values corresponding to solutions of the Rayleigh equations are approached. 

The lower branches of the neutral stability curves for v = 0.72, 1 and 10 were 
also carried to fairly large values of R. In  these cases, plots of log a against log R 
indicated that aR tends to fixed values as R-t co, the values being 17.3, 13.3 and 
2.33 respectively for the three above values of CT. Thus solutions do not tend to 
those of the Rayleigh equations but rather to a boundary-layer type of approxi- 
mation to the stability equations, obtained by putting aR = constant, a = 0 in 
(2.1) and (2.2). Similar plots of log a against log R for the lower branches of the 
neutral stability curves for v = 0-1 and v = 0 did not show the same behaviour. 
One suspects that in the case of v = 0.1 this was due to the calculation being 
stopped at  too small a value of R. For the case v = 0 it is possible that aR + 00 

as R-tco on the lower branch and that the solution tends to a solution of the 
Rayleigh equation. The corresponding limiting value of c is shown by a letter R 
in figure 5 and it is possible that the = 0 curve approaches this as a -+ 0. 

4. Eigenfunctions 
The eigenfunctions q5 and 0 were calculated at  all the critical values (a, R) 

listed in table 1 and the integrals (2.7) and (2.9) calculated. Figures 6-13 show a 
selection of the functions calculated and the integrals are listed in table 1. 

0 2 4 
X 

FIGURE 6. Root-mean-square disturbance velocity, w, as a function of x at larger wave- 
number critical values for Prandtl numbers v = 0, 0.72 and 2. The ordinate is chosen in 
each case so that the integral across the layer of w2 = la$12) is unity. 

Let us first discuss the integrals. These were calculated independently of the 
relations (2.6) and (2.8) which serve as a check on their accuracy. The values in 
table 1 are divided into two groups and it is evident that the energy balances (2.6) 
in one group are quite different from those in the other. In the first group the rate 
B of working of buoyancy forces is small compared with the rate RM of transfer 

50 Fluid Mech. 35 
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of kinetic energy from the mean flow to the disturbance. I n  the second group 
the reverse is true. For this reason it appears appropriate to associate the first 
group of values with a ‘mechanically-driven instability’ and the second group 
with a ‘ buoyancy-driven instability ’. Other evidence for this identification stems 

2 
X 

4 

FIGURE 7. Root-mean-square disturbance velocity w ,  as a function of x at smaller wave- 
number critical values for Prandtl numbers = 0.72, 10 and co. The ordinate is chosen in 
each case so that the integral across the layer w2 = &{($‘la+ la$12} is unity. 

FIGURE 8. Real and imaginary parts of $’(x) at the larger wave-number critical value for 
the Prandtl number u = 0.72. The normalization is the same as in figure 6. 

from the results of Nachtsheim (1963) and Lilly (1966) which show that for 
Prandtl numbers around unity, the upper wave-number critical values are not 
changed very much when buoyancy effects are neglected whereas the lower 
wave-num.ber critical values disappear. 

Details of disturbance velocity and temperature profiles are given in figures 



Instabilities of a buoyancy-driven system 787 

0.8 

0.4 
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FIGURE 9. Real and imaginary parts of Q’(z) at the small wave-number critical value 
for Prandtl numbers, B = 0.72 and 10. The normalization is the same as in figure 7. 
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FIGURE 10. Amplitude, (01, of disturbance temperature as a function of z at larger wave- 
number critical values for Prandtl numbers B = 0, 0.1, 0-72 and 2. The ordinate is chosen 
in each case so that the integral across the layer of 1131~ is unity. This is not the same 
normalization as in figure 6. 

50-2 
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6-11. It will be noted that although temperature fluctuations are only significant 
within the boundary layer, defined by x < 2 say, velocity fluctuations are felt over 
a much wider region, say x < 4. Now compare figures 6 and 7. The velocity curves 

2 4 

X 

FIGURE 11. Amplitude, 101, of disturbance temperature as a function of x: at smaller wave- 
number critical values for Prandtl numbers u = 0-72, 10 and 00. The ordinate is chosen in 
each case so that the integral across the layer of [81* is unity. This is not the same 
normalization as in figure 7. 

FIGURE 12 FIGURE 13 

FIGURE 12. The rate aW’($T$i-#i#i) at which work is done by the Reynolds stresses as a 
function of x: a t  larger wave-number critical values for Prandtl numbers u = 0 and 0.72. 
The ordinate is chosen SO that the area under each curve is unity. 
FIGURE 13. The rate 2(8,4;+ Bi#;) at which work is done by buoyancy forces as a function 
of x at smaller wave-number critical values for Prandtl numbers r~ = 0.72 and 00. The 
ordinate is chosen so that the axe& under the curve is unity. 
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in figure 6, which correspond to the mechanically driven instability, show two 
prominent peaks, while those in figure 7 show only one. This is presumably as- 
sociated with the fact that, in the former case, there are two distinct critical points, 
that is, points where W = c,. In the latter case either the two critical points are 
relatively close together or c, > W and there are no critical points. 

On the whole the curves for either group vary remarkably little with a but there 
are some exceptions. For instance, figure 9 shows that the curves for $:, ${ do 
change significantly with a even though the corresponding curves for v may not. 
Also figure 10 shows that the curves are rather different at  low Prandtl numbers. 
This is because, for given $, the type of B distribution depends on whether aaR 
is large or small, as can be seen from (2.2). It turns out that aaR is 'large' unless 
cr is quite small. 

Figures 12 and 13 show the terms which correspond to the main source of 
disturbance kinetic energy for the case in question. They are simple curves with 
only one prominent maximum in each case. 

5. The large Prandtl number limit 
The instability due to the action of buoyancy forces is a rather interesting one, 

the mechanism being quite different from that studied in connexion with the 
Orr-Sommerfeld equation. This mechanism dominates at large Prandtl numbers 
for then the advection of vorticity which is necessary for an Orr-Sommerfeld 
type of instability is relatively unimportant. Assuming that some simplifica- 
tion in the equations occurs in the limit, it seems possible that more about the 
buoyancy-driven instability can be learnt by examining this limit. 

Before neutral stability curves were calculated for a > 10, it was thought 
that the corresponding curve for a = co could be found by formally placing 
R = 0 in (2.1) and (2.2) and assuming a finite value of the PBclet number aR. No 
neutrally stable solutions were found, however, under this assumption so it was 
decided to calculate aci as a function of a and aR (with R = 0). This was done for 
aR = 100, a = 0.3 to 0-6; for a = 0-3, crR = 100 to 250; and for a: = 0.6, 
aR = 100 to 150. The values of aci obtained were negative and it appeared that 
aaRci was a function of a only. The minimum value of I aaRc, I occurred at  about 
a = 0-56 being 3.9. 

If any instability did occur for R = 0, aR + 0, one would at  least expect in- 
stability when aR is large. In  the formal limit, R+O, aR+ co, (2.1) and (2.2) 
become the fourth-order system 

$iv - 2a2$" + a:4$ + 28' = 0, 

(W-C)8-@'$5 = 0, 
where $, $' vanish at  x = 0 and x = co. Solutions of these equations were 
examined numerically for a between 0.16 and 0.82 and found, rather surpris- 
ingly, to be neutrally stable, i.e. the eigenvalue c was found to be real for each 
value of u. 

I n  order to investigate the limit a -+ co €or the full sixth-order system, the 
neutral stability curves for (T = 10 to 400 were calculated and examined. These 
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indicated that as c + co, values of d R  = S on the neutral curve remain finite. 
It was then noted that under the formal limit a -+ 00, X fixed, q5 -+ Q0, c -+ co, 
(2.1) and (2.2) reduce to (5.1), that is q50 and co satisfy 

Even though this equation is only of fourth order, all the boundary conditions 
of the full sixth-order equation are satisfied if we set q50 = &, = 0 a t  x = 0 and 
x = co. Values of co(a)  were computed and these are shown in figure 5 as the 
curve labelled a = co. All computed values of co were real and greater than the 
maximum value of W .  Since the values of co for a between 0.6 and 0.82 fit the 

quite well, i t  seems quite likely that co > w,,, for a22 a. We did not, however, 
calculate solutions for large a as there seems little practical motivation for doing 

To find the growth rate aci and the values of S on the neutral curve, it is 

relation CO - w,,, = 0*04201-~ 

so. 

necessary to consider terms of order a-4. If we put 

1 # = q50 + ia- ql, 
c = co + ia-k,, (5.3) 

in (2.1) and (2.2), then the formal limit a+co leads to an equation for #1 and c1 
of the form LA = f 3  (5.4) 

where f = aSX - Y/aS-c,Z, (5.5) 
x = ( w - co) (q5i - a2q5,) - w-"$h0, 
Y = - 2[(6: - a26, - 2&,)/( W - c,,)]', 
Z = 2[6,/( W - c,,)]'. 

The appropriate boundary conditions are q51 = q5; = 0 at x = 0, co. These imply 
that O1 is finite a t  x = 0 so that a correction to  6, must be ma.de in order to satisfy 
the boundary conditions of the full sixth-order equation. Examination of (2.1) 
and (2.2) shows, however, that the appropriate correction is significant only in a 
boundary layer against the wall of thickness a-) and that and c1 are, a t  zero 
order, solutions of (5.4). 

In order for (5.4) to have a solution it is necessary that 

Srn fxdz =Sm ~Lg5,dx = $,L*xdx = 0, 
0 0 S O r n  

where x is a solution of the adjoint problem 

(5.7) 

with x = x' = 0 a t  x = 0, co. Substituting (5.5) in (5.6) gives 
OICl = a(a) s - b(a)/S, (5.8) 

where 
(5.9) 
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Solutions x of the adjoint equation (5.7) were computed and the integrals in 
(5.9) evaluated. a and b were found to be positive. Knowledge of a(a) and b(a) 
yields not only the a = 00 neutral stability curve shown in figure 3 but also the 
growth rate aa-4~~ a8 a function o f a  and S. Contours of constant ae, are drawn in 
figure 14. In  the limit R -+ 0, aR fixed, the first term on the right-hand side of 
(5 .8)  vanishes showing that aaRci is a function of a only as found in the calculation 
mentioned above. The minimum value of (aaRcf) was found to be 4-0 at a = 0.53. 
These figures are not quite the same as those found by the previous method but 
then the previous calculation included the effects of higher-order terms so a 
small discrepancy is to be expected. For large S, acilR is a function of a only 
having a maximum value of 0.019 when a = 0.37. 
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FIarmE 14. Contours of constant growth rate mi = a-kxc, in the limit as the Prandtl 
number u tends to infinity. Note that mi is of order a-9. 

The zero-order neutrally stable motion may be described as follows. For the 
values of a for which calculations were made, cis greater than the maximum value 
of W so that relative to an observer moving with velocity c, the stream is moving 
backwards. If the fluid in the boundary layer is moving upwards, the observer 
would see fluid particles moving downwards and executing small sinusoidal 
oscillations about a vertical line. The amplitude 7 of the oscillations is given by 

(5.10) 

At  points of maximum horizontal displacement, the horizontal velocity is 
zero while the temperature perturbation is a maximum. Thus, the horizontal 
velocity and temperature perturbation are out of phase so that there is no net 
horizontal heat flux and no tendency to increase the level of temperature fluctua- 
tions. To zero order in a-4, the disturbance energy equation (2.6) shows that the 
rate B of gain of disturbance kinetic energy through buoyancy forces is equal to 
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the rate DM of viscous dissipation, that is all the energy produced by buoyancy 
effects is dissipated. Substituting from (5.10) into (2.7) and using the expressions 
for W and 0, it  can be shown that 

B = 2 J m  (coe“sinx-1)q2e-zZdx 

and assuming contributions to the integral for x > TI are small, it is clear that, 
since B must be positive, c cannot be too small. 

The first-order effects are of two different types. Those represented by the 
second term on the right-hand side of (5.8) correspond to  diffusion effects and 
the effect of a stable gradient. These effects are stabilizing and give a negative 
contribution to ci proportional to (aR)-l. The other first-order effect, represented 
by the first term on the right-hand side of (5.8) is advection of vorticity. This 
effect turns out to be destabilizing and gives a positive contribution to ci propor- 
tional to R. In  some ways, this is reminiscent of the behaviour of a fluid flowing 
down an inclined plane (Benjamin 1957): if aR is zero the flow is neutrally stable 
but first-order vorticity-advection effects lead to an instability with growth rate 
proportional to aR. Another similarity with the present problem pointed out by 
Nachtsheim (1963), is that the phase speed of the disturbance is greater than the 
maximum flow velocity. Although the flow may be rendered unstable through 
advection of vorticity, it does not follow that the instability is caused by transfer 
of energy from the mean flow. The expansion and the definition (2.7) imply that 
the rate RM of transfer of energy from the mean flow is of order rl. Table 1 
indicates that crRM tends to a negative value, - 2.3, as u+ 00, so that energy is 
being transferred to the mean flow from the disturbance. Thus the destabilizing 
effect must be due, in some way, to an increased effectiveness of the buoyancy 
force. 

Because instability is produced by a first-order effect, the growth rate of the dis- 
turbance is very small, being of order rr-4 when S is of order unity and of order R 
if S is large. Thus it will take a long time for an instability of this type to become 
evident. It is also implied that other small effects, such as finite amplitude effects, 
could well influence the stability in a laboratory situation. 

One motivation for studying the large-rr limit was in order to obtain a simpli- 
fied system of equations which might shed some light on the buoyancy-driven 
instability. Lilly (1966, $4) in his study of the stability of laminar Ekman layer 
suggested a ‘simplified’ theory of the analogous Coriolis instability, so it is of 
interest to try the corresponding ‘approximations’ in the present problem with a 
not necessarily large. However, if this is done, it turns out that the predicted 
critical Reynolds number is independent of Prandtl number, so the theory is of 
doubtful value in the present context. 

0 

6. The Rayleigh equation 
Under the formal limit aR -+ 00, (2.1) reduces to the Rayleigh equation 

( w - c )  (9’’ - a”) - W”$ = 0. (6.1) 
Thus there may be expected to be eigenvalues of the full equations (2.1) and (2.2) 
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which tend to those of the Rayleigh equation as ctR --f m. Because of this possi- 
bility, eigenvalues and eigenfunctions of (6.1)) together with the boundary 
conditions q5=0 at  x=O, 

q5+0 as x - f m  

were found by direct numerical computation. The path of integration in the com- 
plex x-plane was chosen either to be the real part x 2 0 of the real axis, or alter- 
natively, the path given by x =t --PitW’(t) ,  
with t real and positive andp a positive constant.The latter path was usedespeci- 
ally when ci was small in order to avoid the singularities and was chosen to pass 
the two singularities on the appropriate side (Lin 1955, chapter 8). The values 

FIGURE 15. Wave speed c, and growth rate aci as functions of a 
for solutions of the Rayleigh equation. 

of c, and ci obtained are shown in figure 15. The maximum growth rate aci is 
0.014 a t  ct = 0.39. The distribution of disturbance velocity amplitude, v with x, 
is shown in figure 16 for a few values of a. The curve for 01 = 0 is deduced from the 
theory below. The curve for a = 0.4 corresponding to a growth rate near the maxi- 
mum value is quite similar to the curve shown in figure 6 for CT = 0. The latter 
curve corresponds to a solution of the full equations at a critical value of R. 

As a -+ 0, c tends to the maximum value, 0.3224, of W and the two critical points 
come together. This eigenvalue is of a type discussed by Drazin & Howard (1962, 
9 6) although the details are a little different. In terms of t,he amplitude y defined 
(cf. 5.10) by 

the Rayleigh equation is 
7 = q5/(W-C), 

[(W-C)27’]’ = a2(W-c)2q. 
For small ct and finite x, the solution for which 7’ + a7 vanishes at x = m can be 
expanded as a series 

7 = [1-(&c)2]dx]+..., 

a particular normalization having been chosen. 
Similarly, the solution vanishing at  x = 0 can be expanded as a series 
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where 6 is a constant. In  view of the boundary conditions (6.2), solutions (6.5) 
and (6.6) must be different representations of the same solution. 

Comparison of the two expressions for ( W - c ) ~  7‘ shows that 

6 = - ac2 + O(a2) (6.7) 
so thai in the limit as a -+ 0, 

where the suffix 9n denotes values at the point where W is a maximum. The curve 
for a = 0 drawn in figure 16 is the one obtained from (6.8). 
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FIGUFLE 16. Root-mean-square disturbance velocity, v, &s a function of 2, corresponding to 
solutions of the Rayleigh equation for wave-numbers 01 = 0, 0.2, 0.4 and 0.6. The ordinate 
is chosen in each case so that the integral across the layer of v2 = 19’12 + Icc$l2 is unity. 

To find expressions for c - W,, the solution must be examined in greater detail. 
Equating the two expressions (6.5) and (6.6) for 7 and noting the order of higher 
terms, one obtains the equality 

l+O(a) = aj-om [ 1 - ( L ) 2 ] d x .  W - c  

The contributions to the integral on the right-hand side which are large come 
from the neighbourhood of x = x, and may be inferred from the expression (6.15) 
of Drazin & Howard’s paper which gives the local behaviour of the integral. 

c = W,+ &WAb2 Defining b by 
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and using the expression referred to, (6.9) becomes 

where 

Solving for b2 and taking care to choose the correct root, one obtains 

b2 = pa#( 1 + 8qpa:f + O(a) ) ,  

where 

Substituting the values of the derivatives of W, one then obtains 

This formula was checked against the computed results for a: = 0.02 and a = 0.04. 
To the order shown, the above expression for c - W, was found to be correct to 
about 2 % at a: = 0.02 and 5 yo at a = 0.04. 

7. Stability of convection in a vertical slot 
It was noted in the introduction that the boundary layer under study is 

very much like that found at  large Rayleigh numbers in a vertical slot (Elder 
1 9 6 5 ~ ;  Gill 1966). Thus the above results may be expected to give some informa- 
tion about the stability of convection in a slot. If the slot has height H ,  width L 
and a temperature difference AT imposed between the two vertical side walls, 
there are three pa,rameters which describe the system: the Rayleigh number 
A = yghTL3/~v,  the aspect ratio h = H/L and the Prandtl number (r = v/K. 
It is required that h be large enough for the flow to be approximately unidirectional 
away from the horizontal boundaries so that analyses of stability of unidirec- 
tional flows will be applicable. 

If Alh is greater than a number of order lo4 and h 2 1, a boundary-layer regime 
is found with velocity and temperature profiles (Elder 1965a; Gill 1966) in the 
boundary layers, very similar to the profiles under study. It seems likely, therefore, 
that critical values of the Reynolds numberwill be of the same order. The vertical 
temperature gradient found experimentally is approximately *AT/H, so the 
boundary-layer width defined in Q 2 of the current paper is given approximately 

( J ~ / Z ) ~  = A/8h (7.1) 
by 

and the Reynolds number R based on this width by 

(cTR)~ = 2Ah3. (7.2) 

Thus if Alh is large enough for the boundary-layer stability analysis to apply, 
critical conditions will be determined by a value of Ah3, which is, naturally 



796 A. E. Gill and A .  Davey 

enough, just the combination of A and h which is independent of L. Using (7.2) 
and table 1, the following critical values of Ah3 are obtained: 

log(Ah3) = 7.2 for a = 0.72 (air) 
= 7.3 for c = 7 (water) 
= 10.4 for c = 1000 (oil). 

The corresponding lines in the ( A ,  h)-plane are shown in figure 17. 
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FIGURE 17. Stability characteristics of flow in a vertical slot as a function of Rayleigh 
number A ,  aspect ratio h and Prandtl number r. In the area to the top left of the figure, 
the basic flow is of the boundary-layer type and becomes unstable to travelling-wave 
disturbances at  values of AhS which depend on the Prandtl number. The solid lines represent 
the approximate values of Ah3 for Prandtl numbers of 0-72-7 (air or water) and 1000 
(oil). In the area to the bottom right of the figure the system is conduction dominated and 
becomes unstable to stationary-wave disturbances at values of A which depend on the 
Prandtl number. The solid lines represent the appropriate values of A for Prandtl numbers 
of 0.72 (air), 7 (water) and 1000 (oil). Between the diagonal dotted lines thesystem isneither 
conduction dominated nor of the boundary-layer type and the stability characteristics 
are unknown. 

The limiting value of log (A /h)  for which boundary-layer stability analysis 
can be applied is chosen, rather arbitrarily, as 4-5. This corresponds, by (7.1), 
to the centre of the slot being a t  x* = 41, a t  which point the velocity fluctuations 
are still quite significant, as figure 7 shows. The limiting value of log (A /h)  may 
in fact increase as r increases since the critical Reynolds number for large c 
depends on effects of order a-3, so that small boundary effects may be significant. 

Some results of Rudakov (1967) and Kappus &, Lehmann (1965) for small A/h 
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are also incorporated into figure 17. These results are concerned with the stability 
of the velocity and temperature field established between infinite parallel 
vertical plates and are applicable to the slot problem where effects of the upper 
and lower boundaries are negligible. A/h must be small enough for the basic 
temperature profile to be approximately linear. The upper limit on logA/h for 
this to be true is placed at  2.5 on the basis of the numerical results obtained by 
Elder (1966). 

The stability analysis of Rudakov showed, that for Q < 10 at least, the first 
instability to occur is to stationary disturbances, rather than to travelling distur- 
bances as in the boundary-layer case. The instability appears to be mechanically 
driven as the critical value of A/Q varies only weakly with Q and is given approxi- 
mately by 

log(A/a) = 3-9. 

The line for B = 1000 in figure 17 is based on this formula although Rudakov’s 
analysis did not extend to such large values and, pending further investigation, 
one should allow for the possibility that some travelling disturbances may prove 
to be more unstable at  very large values of Q. 

There appear to be no results either for the middle range of values of A/h 
given by 

2-5 < log A/h < 4-5. 

One can hardly extrapolate the results from the two sides as the types of in- 
stability and the characters of the equilibria involved are so completely dif- 
ferent. It is possible, for instance, that for fixed values of h and Q (say h = 10, 
Q = 1000) some equilibria corresponding to values of A in the middle range 
(3.5 < log A < 5.5) could be unstable, although the boundary-layer equilibrium 
could be stable at  some larger values of A (5.5 < logA < 7-4 in the case cited). 

There is, as yet little experimental evidence with which to compare the results 
shown in figure 17. Elder quotes three pertinent results but the uncertainties are 
rather large and the values of A / h  tend to be in or close to the middle range. First 
(Elder 1965cc, p. 89) he found onset of instability to stationary disturbances for 

logA = 5.5, Q = 1000 and h = 19, 

the corresponding value of logA/h being 4.2, that is, in the middle range. The 
other two results (Elder 1965 b, p. 102) are for the onset of instability to travelling 
disturbances. For B = 1000, the appropriate value of Ah3 is given by 

log(Ah3) = 10-4, 

which happens to be the figure given by the theory for large A/h. However, 
the corresponding value of A/h is not given. For water (Q = 7), travelling dis- 
turbances were observed when 

log(Ah3) = 9.4, 

a value much higher than the one given by the theory for large A/h. The values of 
h give a range from 9 to 27 so that log (A/h)  is between 3.7 and 5.6, partly in the 
middle range. Elder (1965b) also remarks on the variation of the critical value 
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of Ah3 with g. In  0 5 of the current paper it was found that for (r +- 00, the critical 
Reynolds number varies as a-9 so, by (7.2), 

Ah3 cc az. 
This differs from the law, suggested by Elder (19653, equation 5). 

Comment o n  the ‘double glazing’ problem 
Figure 17 is of interest in relation to the ‘double glazing’ problem, that is the 
problem of choosing for a slot of given height H ,  a width L which minimizes the 
heat flux across the vertical boundaries for a given temperature difference AT. 
This problem was discussed by Batchelor (1954). It would appear from figure 17 
that if air is the fluid concerned and aspect ratios of 100 or more are involved, 
the relevant criterion is not associated with the change from a conduction- 
dominated regime to a boundary-layer regime, but is associated rather with the 
question of whether or not the conduction-dominated system is stable. Clearly 
the heat transfer across the gap will be enhanced when the system becomes un- 
stable, so L must be chosen so that A is below the critical value, that is, 

gATL3 < 8 0 3 0 ~ ~ .  
If the gap is 1 cm, the system will not become unstable until the temperature 
difference is around 40°C. If the gap is Zcm, the corresponding temperature 
difference is about 5 “C. 

The work of A. Davey was done as part of the general research programme 
of the National Physical Laboratory. 
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